Was ist eine Zahl?

Eine Zahl ist Modul eines Algorithmus, der dazu dient irgendetwas zu reproduzieren (z.B. eine Länge oder eine Spannung).

Eine Zahl ist Modul eines Algorithmus, der Veränderungen bei der Übermittlung eines Wertes erkennbar und korrigierbar macht. So werden in der TTL-Technik etwa Spannungswerte in einem Bereich um 0 V auf 0 V zurückgeführt und in einem Bereich um 5 V auf 5 V. Der Algorithmus enthält also folgende Module:

  1. finde den nächsten gültigen Spannungswert um die Eingangsspannung
  2. Gültiger Spannungswert Nr. 1 (hier: 0 V)
  3. Gültiger Spannungswert Nr. 2 (hier: 5 V)

Die Einheit ist der einfachste Algorithmus des Vergleichs: dasselbe.

Alle anderen rationalen Faktoren sind Teil eines praktisch ausführbaren Vergleichsalgorithmus. “Praktisch” heißt hier: in definierter endlicher Zeit ausführbar, wenn ich beide Objekte habe.

Wenn ich nur ein Objekt habe und das andere erzeugen will, ist nur die Vervielfältigung mit natürlichen Zahlen und das Teilen durch gewisse natürliche Zahlen wie Potenzen von Zwei praktisch ausführbar in obigem Sinne.

Irrationale Zahlen sind selbst durch komplexere Algorithmen definiert, die ihrerseits auf natürlichen Zahlen aufbauen und in der Praxis nur in rationalen Näherungen verwendbar, oder repräsentiert durch ihren Algorithmus selbst.

In der Physik entstehen alle scharfen Werte durch Eigenwertbildung, das ist die Überlagerung sehr vieler Wellenfunktionen bei gegebenen Randbedingungen. Gehe ich von wenigen zu immer mehr Wellenfunktionen über, wird der entstehende Wert immer schärfer. Das heißt, dass die Eigenwertbildung ein Grenzprozess oder Selbstorganisationsprozess ist. Er enthält zufällige Variationen, die sich aber bei größer werdender Zahl mehr und mehr gegenseitig auslöschen.

Das legt nahe, dass das mathematische Objekt Zahl überhaupt ebenfalls Ergebnis eines Grenzprozesses ist.

Wenn ich keine verschiedenen Zahlen habe, habe ich gar keine.

Das Konzept der Einheit beruht auf der Anschauung der physikalischen Einheit, hier verstanden als ein physikalisches Objekt, das als ganzes bewegt werden kann, wie ein Stock oder ein Ziegelstein.

Diese physikalische Objekteinheit beruht darauf, dass zum Zerteilen Energie notwendig ist. Dies hat zur Folge, dass sie zeitlich relativ stationär ist. Diese zeitliche Stationarität ist das Kriterium für eine physikalische Objekteinheit.

Das Konzept der Einheit beruht auf der Informationsreduktion der  Sinneseindrücke, die darauf beruht, die Welt in Elemente und Beziehungen zwischen den Elementen zu zerteilen. Die Elemente bleiben dabei in sich nahezu unverändert. Auf diese Weise lässt die Veränderung der Welt von einer Szene zur nächsten sehr kompakt wiedergeben. Aus Folgen von Wiedergaben lässt sich ein Modell zur Vorhersage entwickeln.

Durch die Existenz von Klassen ähnlicher Elemente, deren Kenntnis man beim Gegenüber voraussetzen kann, lässt sich eine Szene und ihre Veränderung sehr kompakt kommunizieren.

Die physikalische Objekteinheit beruht auf der Koexistenz von Bindungs- und Abstoßungskräften, die einen stationären mittleren Abstand der kleinsten Bausteine bewirken, sowie auf deren stationärer Größe. Die Größe der kleinsten Bauteile beruht auf Eigenwertbildung im o.g. Sinne. Das heißt, dass die stationäre Größe einer physikalischen Objekteinheit auf der Eigenwertbildung einer Wellenfunktion beruht, plus einer Additionsfunktion.

Die innere Repräsentation einer physikalischen Objekteinheit ist ein innerseelisches Modul, das in sich gleich bleibt. Man kann alle inneren Module, die in sich gleich bleiben, als Objekte bezeichnen, z.B. Gesetze, Personen, Klassen. Dies ist, was Platon “Ideen” nannte. Sie stehen immer in Beziehung zu anderen.

Der Prozess der Herausbildung eines Repräsentationsmoduls in der Person ist selbst ein iterativer, insofern das Objekt unbewusst solange verändert wird, bis es stationär bleibt.

Das heißt, dass es einen Trieb des Gehirns gibt, stationäre innere Objekte zu bilden.

Also ist die Entstehung des Gleichbleibenden in der Physik und im Geist einem ähnlichen Prozess zu verdanken: der Iteration bis zur Stationarität.

“Diskret” heißt “mit hohem Vertrauen auf Konstanz”.

Eine Zahl selbst ändert sich niemals, weil ihre Konstanz zu ihrer Konstitution gehört.

Zahlen sind Inseln der Konstanz in einer sich verändernden Welt.

Ein Vervielfältigungsalgorithmus kann etwa diese beiden Module enthalten:

  1. füge n mal hinzu
  2. n

In der Praxis ist eine Zahl ohne Verwendungsalgorithmus sinnlos.

Dass physikalische Konstanten (Elementarladung, elektrische Feldkonstante, Lichtgeschwindigkeit…) konstant sind, kann wahrscheinlich eines Tages auf eine Iteration höherer Ordnung zurückgeführt werden.

Kommentar verfassen

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit Deinem WordPress.com-Konto. Abmelden / Ändern )

Twitter-Bild

Du kommentierst mit Deinem Twitter-Konto. Abmelden / Ändern )

Facebook-Foto

Du kommentierst mit Deinem Facebook-Konto. Abmelden / Ändern )

Google+ Foto

Du kommentierst mit Deinem Google+-Konto. Abmelden / Ändern )

Verbinde mit %s